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Details of a new model of water waves that describes wave propagation over long distances 
accurately, at low cost, and for a wide variety of physical situations are given. The anaiysis 
and numerical methods selected for computer solution are given in some detaii. The model 
uses exact prognostic equations, and a high-order expansion to relate variables at each time 
step. The accuracy of the model is demonstrated most completely for solitary wave 
propagation, where model results are compared to exact results. It is found that the model 
results are much more accurate for high solitary waves than are earlier. Boussinesq-type 
theories, and give good results for waves so high that they are a!most breaking. The capability 
of the model to treat a variety of situations is demonstrated for coliiding solitary waves, 
nonlinear dispersive wave trains, waves in channels of varying breadth, and unduiar bores. 
Formally, the model incorporates nonlinear long wave theory exactly, incorporates enough 

dispersion to describe linear waves with fourth-order precision. so that both shallow water 
waves and deep water waves are included, and describes accurately waves for which 
dispersive and nonlinear effects are both important. !Z 1981 Academic Press, Inc. 

1. INTR~DLJCTI~N 

Three bodies of theory have long existed that describe the evolution of water 
waves. Linear waw theory treats infinitesimal waves of arbitrary length, and a 
satisfactory account of the basic theory is available in many places (see, e.g., Lamb 
[ 1 I). Except at the long wave limit, waves are dispersive, and so only sinusoidal 
waves of infinite extent can be waves of unchanging shape. Long wave theory treats 
waves infinitely long compared to the depth; they can have arbitrary amplitudes. No 
wave can propagate with unchanging shape (rates of change of shape tend to vanish 
in the limit of small amplitudes, or, more precisely, small slope). Waves of depression 
can be accommodated by the theory for indefinitely long times, but waves of 
elevation steepen, until at some finite time the horizontal scale at a wave front is not 
particularly long compared to the depth. Extra features such as bores (the water-wave 
analog to shock waves in gas dynamics) are added to the long wave theory to 
complete the description. Again, accounts of the basic theory are widely available 
(see, e.g., Stoker [2]). 
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A third situation can exist, in which effects of nonlinearity and dispersion are 
balanced sufficiently that waves can propagate for long distances without significant 
change of form, even in the absence of dissipation. The first person to report them in 
scientific annals was Russell [3,4]. He first saw a solitary wave in a canal, and being 
on a horse at the time, was able to chase it along its tow path for a mile or more. He 
later performed laboratory experiments and reported an accurate relationship between 
the wave speed and wave amplitude. Much theory has gone into describing such 
waves, mostly published in two spurts. During the latter part of the nineteenth 
century the governing equations and some solutions for fairly long waves that can 
travel both ways (Boussinesq [5,6]) an one way (Korteweg and deVries [7]) were d 
set down. In their pioneering numerical study of solutions to the Korteweg and 
deVries (KdeV) equation, Zabusky and Kruskal [8] discovered that overtaking 
solitary waves emerged with properties no different from their pre-collision ones 
(apart from roundoff errors and slight phase shifts). They suggested that solitary 
wave solutions to the KdeV equation be called “solitons” to emphasize their ability to 
survive nonlinear collisions. Much research on solitons has resulted (see the review 
by Zabusky [9] for a modern summary). 

The word “order” will occur frequently in this paper. Unless qualified, it refers to 
an ordering of parameters that measure the smallness of wave amplitude and the 
smallness of wave train dispersion. The lowest order corresponds to long waves of 
infinitesimal amplitude that travel through water of constant depth. Specifically, at 
lowest order the wave has an amplitude that is negligible when compared to the 
undisturbed depth, and any relevant horizontal scale of the wave (wavelength or half- 
width) is infinitely greater than the undisturbed depth. The waves are non-dispersive. 
All disturbances can be described as a superposition of waves of unchanging shape. 
The wave shapes are arbitrary. 

The Boussinesq, KdeV, and RLW (regularized long wave-an alternative to 
KdeV) descriptions each include the lowest-order effects of dispersion and 
nonlinearity. Each has waves of unchanging shape-solitary waves and periodic 
waves. Each can describe evolving waves. The accuracies of each description, 
however, are limited by their retaining only the lowest-order nonlinear and dispersive 
terms of the governing equations. Numerical models based on these descriptions can 
be called “Boussinesq models.” These include models for one horizontal dimension 
[l&13] and for two horizontal dimensions [14, 151. The cost of running the one- 
dimensional models is small, and the cost of running the two-dimensional models is 
bearable. The reason for the relatively low cost is the fact that the Boussinesq 
expansions turn a two-space-dimensions-plus-time-problem into a one-space- 
dimension-plus-time computer problem. 

Other forms of water wave models exist that do not involve a low-order expansion. 
These include direct numerical solutions of the governing equations of continuity and 
motion, either in an Eulerian representation [ 16, 171 or in a Lagrangian represen- 
tation [ 181, as well as other methods that offer high resolution of the vertical coor- 
dinate [ 19, 201. These methods have the capability to solve problems involving 
breaking waves and other extreme situations that Boussinesq models cannot reach. 
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Their running costs are high, however, because the problem is essentially that of a 
two-space-dimensions-plus-time computer problem. Because elliptic equations arise at 
each time step, and these take fair amounts of computer time, either runs at relatively 
high resolution for relatively short times are performed, or runs at relatively coarse 
horizontal resolution are reported. 

Some researchers have worked hard on the problem of actual solitary waves in 
water (restrictions on wave amplitude are removed, dissipation is not treated, and the 
waves are assumed to be of unchanging shape from the start). These theories produce 
results on the structure of solitary and periodic waves all the way to breaking, and 
are excellent benchmarks for assessing the accuracies of theories of waves that evolve 
to solitary waves [21, 221. These are special calculations., however, limited to waves 
of unchanging shape. 

This paper describes an extension of Boussinesq-type methodology that IS 
demonstratably accurate for waves where dispersion and nonlinearity are in approx- 
imate balance, while still retaining the ability to treat waves where they are not in 
balance. The analysis retains exactness for as long as is practical. At a crucial step 
the choice of solving for a flow field by a low-order expansion is made to change the 
two-dimensional physical problem to a one-dimensional computational problem that 
can use fast algorithms. This choice limits the description of solitary waves to one 
order better than the Boussinesq and KorteweggdeVries descriptions (the accuracy 
turns out to exceed that expected at the same order by comparison with exact solitary 
wave results). Long wave theory is retained and the linear theory is retained through 
a high order in a dispersion parameter, and can be extended to even higher orders 
easily, if desired. .The method is straightforward and computationally efficient. 

Two distinct elements go into the research: a general mathematical analysis of the 
physical situation, and a partly empirical formulation of an appropriate numerical 
method to generate solutions to initital/boundary value problems of interest. Section 
2 gives the analytical development. Section 2A discusses the pair of prognostic 
equations used in the work. One of them comes from recent work [23, 24;. These 
exact equations do not close the system, however, and expansions are made to close it 
(Section 2B). In Section 2B the fluid velocity at the bottom boundary is chosen as 
one of the basic dependent variables to make the expansion far-reaching (for linear 
waves the expansions converge for all wave numbers). In Section 2C further transfor- 
mations are made that retain high accuracy while keeping small numbers of terms in 
the expansions (this is analogous to representing a function by Fade approximantsj. 
Section 3 outlines the numerical method used to generate solutions, and discusses 
boundary and initial conditions. The numerical method is leapfrog, which employs 
centered time and space finite differences. Its stability properties are discussed. 
Section 4 describes tests of the accuracy of the model by comparing properties of 
solitary waves that evolve from the calculation with theories that describe 
nonevolving solitary waves precisely. The model solitary waves turn out to be 
surprisingly accurate almost to breaking amplitudes. Section 5 describes the 
capability of the model to treat a wide variety of physical situations, In (5Aj the 
problem of a head-on collision of solitary waves is examined. The solitary waves are 
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found to be near-solitons (but not exact-solitons). In (5B) dispersive wave trains are 
generated to demonstrate how the model handles waves of varying wavelengths. 
Section 5C shows simulations of laboratory experiments on the propagation of waves 
through channels of varying breadth. The simulations mirror certain aspects of the 
experiments that other theories miss. Section 5D shows examples of undular bores 
running through times and distances long enough to match experiments performed by 
Favre [25]. Finally, Section 6 discusses the key features of the model that are felt to 
be chiefly responsible for its accuracy, efficiency, and capability. 

2. ANALYSIS 

A. The Exact Governing Equations 

The physical model used here takes the fluid to be incompressible and inviscid, 
undergoing only irrotational motions. Rigid impermeable walls bound the sides and 
bottom of the fluid. A constant-pressure surface bounds its top. This physical model 
is that most frequently taken by other researchers. Figure 1 shows the geometry and 
the definition of some of the physical variables. 

A) PLAN VIEW 

B) SIDE VIEW 

C) DEFINITION OF VARIABLES 

FIG. 1. The geometry of the computational channel. Variable depths as shown in (B) are not treated 
in this paper. 
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Three exact relations hold for fluid motions in a channel having breadth b an 
instantaneous depth h: 

aq la 
z+,-(nThb)=O (2.1) 

(2.3) 

where the horizontal displacement is x, the time t, the elevation above still water level 
q, the surface slope ?I’, the components of surface velocity U, (horizontal) and u, 
(vertical), vertically averaged horizontal velocity U, and the acceleration of gravity g, 
The vertical coordinate ~1, positive upwards, does not appear explicitly in (2.It(2.3). 

Equation (2.1) represents conservation of mass (Stoker ]2] gives a complete 
derivation), and is frequently used by wave modelers. Strictly speaking, the product 
r?b is the area above still water level and the product zihb is the volume flux of fluid. 
Thus, q should be interpreted as the average elevation above still water level, and U as 
the average horizontal velocity over a cross section. For sidewalls that are close 
enough together (b < h), and possibly for wide but gently varying b, q and u are 
sufficiently constant across the section that q can be taken as the surface elevation 
and ti the vertically averaged velocity (see Green 1261). This paper so interprets 7 
and ti, and ignores cross-channel variations throughout. 

Equation (2.2) is an unorthodox form of an equation of motion. For irrotationai 
flows U, + ~I’L’, is just @,/8x, where 4, is the velocity potential evaluated at the 
surface. It is a straightforward matter to derive (2.2) from Bernoulli’s law. It is used 
in place of Bernoulli’s law here to put it in conservative form. It has more generality 
than needed here, for it can be derived for inviscid but not necessarily irrotational 
flows [23]. More recent work interprets the spatial integral of (2.2) as an extension of 
Kelvin’s circulation theorem [24]. 

Equation (2.3) is the kinematic surface relation. The second identity in (2.3) is a 
simple (if not transparent) identity. 

Letting 9; = U, + V’U, and substituting (2.3) into (2.2) gives the pair of prognostic 
equations (in 7 and qs) used in the numerical work 

arl ’ ,+-$$-[@,+~)bl=O p4) 
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The term ar/at in (2.5) can be replaced with a a/lax term using (2.4) and so each is 
of the form 

where f is either qb or qS, and g(x, t) contains q, qS and U. Closing the system thus 
demands that a relation be found connecting q, qS and ZT. This relation is found by 
considering the velocity potential, which satisfies 

where for irrotational flows 

v*(b = 0 (2.7) 

u(x, y, t) = iq/axx; u(x, y, t) = agay. (2.8) 

B. A Series Solution 

In terms of the fluid velocity at the bottom (taken here to lie along y = 0) ub = 
#6(x, 0, t), (2.7) gives the Taylor series expansion 

1 1 (-l)N a%* 
u(x,y,t)=ub-~u~y2+24u~~~’ -... f--+ . . . 

(2N)! ax- (2.9) 

where primes denote partial differentiation with respect to x. 
In terms of ub, it turns out that 

1 
u=zq-h*u;+ 

1 -h$& . . . 
120 

(-1)” 2N 2NprimeS 

+ (2N+ l)! h ub 

qs = ub - + (h’u;)’ + & (h’u;)’ - ... 

(2.10) 

(2.11) 

Consequently, both U and qs can be written as functions of ub. Equations (2.10) and 
(2.1 l), along with (2.4) and (2.5), close the system and are an exact representation 
for irrotational two-dimensional waves in an incompressible inviscid fluid lying atop 
a rigid impermeable horizontal bed. If the channel walls and/or still water depth vary 
only gradually over a characteristic distance associated with the wave motion 
(wavelength or solitary wave thickness, for example) we expect that the set will 
produce results that are exact in the limit of gradual variation and may be quite 
accurate for sufficiently gradual variation [26]. 
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G. Approximatiom 

In the numerical work (2.4) and (2.5) are used to advance q and q, by one time 
level in a finite difference approximation. The problem then arises of how to evaluate 
the fluxes in the a/ax terms of (2.4) and (2.5) at this new time level. Using the 
formulation here, this involves solving (2.11) for ub from the new values of q, and 
h = h, + q. The method of solution adopted here employs a fast “tridiagonal matrix 
solver.” It solves (inverts) matrices containing only on-diagonal and the adjoining off- 
diagonal elements. Thus, the finite difference form of (2.11) can be inverted if trun- 
cated after the term -1/2(/z%;)‘. The resulting formulation would incorporate both 
long wave theory and Boussinesq theory, but would fail to satisfy the linear water 
wave theory beyond first order in k’hi. By using the tridiagonal solver repeatedly, 
and by rewriting the numerical coefficients of the linear terms of (2.10) and (2.4 1) it 
is possible to incorporate a long wave expansion of linear wave theory to high order 
in k2hi with a minimum number of repeated tri-diagonal solves. This section provides 
some details that retain second-order accuracy in k2hg with a single tri-diagonal 
solve, and fourth-order accuracy with a pair of solves. 

The depth h that appears in (2.10) and (2.11) is expressed as h = h, + ~1. Equatiotn 
(2.11) is then rewritten 

q,=u&(h;u;)‘-:[h’-h;)u;]‘+.... (2.12) 

A new velocity variable u’ is then introduced that transforms (2.12) to 

q,=C-a~!,(h~C’)‘-+[(h’-hi)u”‘]’ 

+ a~!,I(h~zi”‘)’ + &[(h’ -hi) P’]’ - . . . (2.13) 

where a!jln and a:‘, , are constants that enter the linear terms of (2-13). Equation 
(2. IO) is similarly decomposed, i.e.. 

Note that the nonlinear terms in (2.13) and (2.14), those involving h rather than h,, 
are unaffected, no matter what the values of the am,n’s and bmS,‘s. 

The coefficients am,n and b,,,, are selected to maximize the accuracy of linear 
waves. The first few combinations are 

1st order: 

ar’, = l/3; 

b”’ = 0; . . . 
0.1 

a’?’ = (). 
0.1 3 ... 
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2nd order: 
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3rd order: 

ay; = 317; u:*: = l/105; , 0:‘; =o; . . . ( 

b:f: = 2121; b’*’ = 0. 1,z 3 *-- 

4th order: 

ay: = 419; u$“z = l/63; 

bit; = l/9; b:f: = l/945; 

The dispersion relation for linear waves becomes of the form 

(1 st order) 

c* 1 -= 
8% 1 + ik*h; 

(2nd order) 

1 + &k*h; 

= 1 +;k*h; 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(3rd order) 

1 + &k”h; 

= 1 + jk2h; + &k”h; 

(4th order) 

1 + $k*h; + &k”h; 
= 1 + $k2h; + &k”h; . 

These are the entries to a Padl table P(N, N) or P(N - 1, N) representing tanh(kh,), 
and are correct to the order of k*hi indicated in the parenthesis. 

To second order (in dispersion) the calculations can be explained most simply. Use 
one tridiagonal solve on (2.13), 

qs=J-j(h$‘)‘-;[(h’-h;)u”]‘, (2.20) 
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thus obtaining u’= I.@, tnew). Then substitute this value of zi into (2.14): 

27(x, f”,,“) = c- +hg” - i (h’ - hi) u”” (2.21) 

to evaluate the new value of U. 
If the fields v and qs are regarded as arising from the dual expansion in an 

amplitude parameter E E ~ma.Jh, and a dispersion parameter g = hi/l’, where ! is a 
characteristic horizontal scale of the wave motion, then the procedure using (2.D) 
and (2.21) retains all terms of the exact equations (2.4) and (2.5) that are the 
following orders: 

P 
l/2 (governs waves in long wave theory; 

if only terms in a,~‘~’ are retained, 
we have linear long wave theory) 

(an approximation to Binear waves) 

(the Boussinesq equations retain 
terms only through these orders) 

(the first order beyond the 
Boussinesq equations). 

The lowest-order terms that are dropped are 

o(&p2); 0@2,32); O(E3,LP2). (2.22) 

Moving to a 3rd and 4th order formulation, which involves solving (2.13) with 2 
successive tridiagonal matrix solvers, pushes the dispersive errors from O(EP”‘) to 
O(E~‘!‘) and O(E~“/~), respectively. 

Unfortunately, the other terms of (2.22), i.e., O(s2p5!‘) and O(E~,D~“) remain. Even 
so, the formulation stands at one order in E and p further along than the Boussinesq 
equations. As we shall see, the numerical results yield solitary waves of a practical 
accuracy beyond that expected from (2.22). 

Figure 2 displays the connection between this theory and other water wave 
theories. As the figure shows, each theory is valid over a restricted range of 
nonlinearity, dispersion, or both. The merit of this theory is twofold: first, it incor- 
porates all of long wave theory, no matter how nonlinear, and goes all the way to the 
fourth order in k2hi in a long wave expansion of linear theory. Second, this theory 
goes one order beyond the theories of Boussinesq, Korteweg and devries, and other 
investigators who consider nonlinear dispersive waves. Consequently, the formal 
(and, as will be shown, the practical) accuracy of this theory is higher than the 
Boussinesq-type theories, and can be applied to higher waves. In summary, this 
theory can be called a “unified” theory of water wave propagation in that it incor- 
porates long wave theory, a high-order version of linear wave theory, and can treat 
higher waves than any other time-dependent theory that includes both nonlinearities 
and dispersion. 
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LEGEND 

B LINEAR WAVE THEORY 

IX LONG WAVE THEORY 

6X3 BOUSSINESQ THEORIES 

m THIS THEORY 

FIG. 2. Various water wave theories for a rectangular channel. Theories of evolving waves in water 
generally are limited by truncating terms in the exact governing equations that involve dispersion or 
nonlinearity or both. The convention used here is to consider the linear long wave theory as being of 
“zeroth” order in dispersion and nonlinearity. The dispersive index 1cI is the power of (hi a’/&‘) above 
that of long wave theory. The nonlinear index N is the power of q/h, above that of long wave theory. 
Thus A4 = 0 corresponds to p”‘, N = 0 to E’, hf = N = 0 to s,u”‘. Note that for situations where 
nonlinear and dispersive effects are nearly balanced, this theory extends one order beyond the 
Boussinesq equations (in each of Al, N). For linear dispersive waves this theory (when 4th order coef- 
ficients from 2.18 are used) is three orders beyond the Boussinesq equations. This theory recovers long 
wave theory when M = 0, unlike some versions of the Boussinesq equations. 

To show how well the theory deals with linear waves that are not so long, Fig. 3 
gives dispersion relations from various theories. The “2nd order” theory is shown to 
be fairly accurate. The “4th order” theory that makes use of (2.18) can hardly be 
distinguished from exact linear theory over the range of Hz, displayed. This range to 
Hz, = 8 takes us into essentially deep water waves. For example, the phase speed of 
waves having kh, = 8 is within 0.0000002 of the speed of waves in infinitely deep 
water. 
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LEGEND 

2 
-1 

x 1 00 

EXACT 
FIRST ORDER. KDV 
FIRST ORDER. RLii 

o THIS WORK. SECOND ORDER DISPERSION 
- THIS WORK, FOURTH ORDER DISPERSION 
r THIS WORK, THIRD ORDER DISPERSION 

Frc. 3. Dispersion relations for linear water waves. 

3. THE NUMERICAL METHOD 

-4. The Governirzg Equations 

The simplest wave problem that the theoretical (and computational) model can 
address is its lowest-order one-long linear waves in a rectangular channel. -Any 
numerical method used for more complex wave propagation had better do a good job 
for these. As pointed out earlier, this lowest-order theory retains terms o(E,u”‘) and 
drops those of higher order. Equations (lo)-(1 1) give E; = ub; qr = ubr and se 
4 = U = qs Equations (4)-(j) then become 

(3.1) 

Systems similar to (3.1) appear in many branches of science. For numerical solution, 
the unstaggered leapfrog method can be extended to the problem at hand, and can be 
made accurate by a suitable choice of space and time step. Thus, the approach taken 
is to represent the fields in finite difference form and approximate derivatives with 
respect to space and time by central differences. 

With subscripts denoting the spatial position, and superscripts the time level, the 
simplest difference form of (3.1) that places both q and q at the same grid points is 

In+1 rn -C-’ +h 4~+1-4ai-1~o 
2At 0 2Ax 

mt1 qn -G-l ?~+l-c-*=o~ 
(3.2) 

2At +g 2At 
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Upon substitution of a linear wave cc exp i(wt - kx) for q and q we derive 

sin*(e.L4t) 
(At)2 =gho 

sin’(tix) 
(Ax*) . (3.3) 

Equation (3.3) is neutrally stable for /AtI < IAxl ( gh,J1’2, in that o is real for all 
real k. The dispersion relation for At = Ax(gh,)-“2 is 

m2/k2 = gh, (3.4) 

which is exact for arbitrary wave numbers and numerical resolution Ax. When 1 AtI # 
I4 WW”2, we can derive the relation 

cu2 
k2gh, = 1 -; [(Ax)’ -gh,(At)‘] + O[(Ax/h,J4]. 

This equation contains second-order numerical dispersion unless I At I = 
( gh,)-“2 lAxI. It thus appears that the choice of I At J = (gh,J”’ 1 AxI will likely 
minimize numerical dispersion for fairly long waves. For long linear waves this 
choice lies at the boundary of instability, however, and we must examine stability in a 
little detail for the more general problem. To do this, let us consider the effects of 
nonlinearity and dispersion separately. 

Consider dispersion first. The second-order linear set of equations takes the dimen- 
sionless form 

Distances are measured in units of h, and speeds in units a. Again, letting the 
field be represented as proportional to exp[i(wt - kx)], we can derive 

(3.7) 

where P = [ 1 - cos(kAx)]/(Ax)* > 0. Consequently, the expression within the 
brackets of (3.7) never exceeds unity. For (At/Ax)* < 1, the RHS of (3.7) does not 
exceed unity, so w is real, i.e., we again have neutral stability for all k, Ax. 

After expanding (3.7), one can derive the numerical dispersion relation (for 1 AtI = 
IW 

w2-k2 ’ +Ak2 - 
1 +;k” 

+ $- k4(Ax)’ + higher-order terms in (Ax)*. (3.8) 
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The first term of the right-hand side of (3.8) gives the exact dispersion relation for 
(3.6). The lowest-order numerical dispersion errors are proportional to k4(4.~)‘, with 
a small coefficient, in contrast to a choice l4tl < 14x1, which would introduce an 
error O[k2(4x)‘] with a not-so-small coefficient unless 4t is almost 4x. 

Other formulations of the problem, besides being of lower order: sometimes choose 
a velocity variable in such a way that (accidentally) constrains practical solutions. 
For example, if qs (the same as U, in the low-order formulation) is taken to be the 
dependent velocity variable, the linearized Boussinesq equations are still in the form 
of (3.6), but with ~7 replaced by qs and different numerical coefficients: in (3.6), 
--l/15 goes to +1/3 and 2/5 goes to zero. Then (3.7) becomes 

sin*(Wdt) = ‘-$ 
( 1 

2 

! 1 2 

r 
sin2(k4x) I 1 --3-Pi 

Here the factor within the brackets approaches -co as (4x)‘+ 0, and so 
sin’(u4t) < 0 and o can have an imaginary part, presumably unstable. Only if 4r 
goes to zero at least as fast as (4~)~ is stability assured. This makes numerical work 
very expensive for equations having more dispersion in forms like the first of (3.6) 
than in forms like the second, because more time steps must be taken. The Korteweg- 
deVries equation has expensive dispersion, and typical finite difference solutions even 
as coarse as 4x = 0.25 require time steps the order of 10P4 (See Vliegenthart [27] for 
fuller discussion). The regularized long wave equation, on the other hand, has its 
dispersion in a form akin to the second of (3.6), and numerical work can be done at 
4t =4x (e.g., Bona et al. [28]). 

The inclusion of some nonlinear terms to (3.6) for simple waves changes the 
stability analysis only by a little when the waves are long. Then one can approximate 
the nonlinear terms as the product of a slowly varying field and a potentially unstable 
rapidly varying field. The slowly varying field is incorporated in the long wavelength 
wave speed, resulting in 

(3.10) 

where c = ( gh)‘j2 f u includes nonlinear contributions and can exceed unity. Thus 
(cdt/dx)’ is a factor that can exceed unity when 4t =4x. Note, however, that this 
does not imply instability, for sin2(k4x){ (1 + &P)/( 1 + jP)} is bounded by a 
number less than unity, the bound being dependent on (4x)*. For example, for 
4x = l/8, typical of the computations run to date, this factor never exceeds 0.2. 
Hence, c can exceed unity by a comfortable margin without necessarily giving 
instabilities. The stability analysis given here is not complete, however, 
Computational instability has arisen for some cases involving very high waves. The 
conditions under which instability occurs will be identified later. 
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B. Boundary Conditions 

In all calculations run to date, rigid impermeable side and end walls bound the 
fluid. For Laplace’s equation (2.7) to possess valid solutions we must specify a local 
property of Q everywhere along a closed boundary. Here the boundary conditions at 
the lower boundary are specified by the form of (2.9). The top boundary condition is 
specified by (2.5) which says, in essence, that the pressure is constant there. At the 
ends the physics demands that the normal components of fluid velocity match the 
wall velocity at each point. This can be transformed to conditions on q and q, 
demanded by this formulation. Taking walls to be vertical and moving horizontally, 

where U(t) is the wall speed. 

u(wal1, ~1, t) = U(t) (3.11) 

We further need a condition on q at the wall. This is most easily derived in a 
Lagrangian formulation. One equation of motion is 

t) 

where a and b are the initial coordinates of the fluid particle now at (x, y). Let us 
evaluate the terms for the fluid surface particle at the wall. When the wall is nonac- 
celerating the first term vanishes. When the fluid surface is horizontal at the initial 
time, the third term vanishes. Apart from the possibility that the fluid at the surface 
accelerates at exactly -g, this demands that 8y/3a = 0, which is the same as 

“L() z- . (3.13) 

We know that u, (wall, t) = U. Using (3.11) 

4, = u (3.14) 

at the wall, so long as it is nonaccelerating. We do not consider accelerating end 
walls in this report. 

C. Initial Conditions and Time Levels 

All calculations are started by specifying the wall geometry and values of 
q(,u, t = 0), q,(x, t = 0) throughout the region. From these one calculates G from 
(2.13) and U from (2.14) at t = 0. Values of r] and qs at t = *(l/2) At are formed by 
one-sided time differencing and the fluxes entering (2.10) and (2.11) at t = +( l/2) At 
are found. The fields at t = -(l/2) At and fluxes at t = +( l/2) At are used to advance 
the calculation to t = (3/2) At. Fluxes at t = (3/2) At and fields at t = (l/2) At are 
used to advance to t = (5/2) At and the process is repeated indefinitely. For some 
runs the process is continued to t = (N + (l/2)) At, and then the time interval is 
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reversed, i.e., dt -j -dt, using the fields at t = (N + l/2) At as initial conditions. The 
time levels on the return toward t = 0 are t = NAt, and lie midway between the 
advancing-time levels until t = 0 is reached. 

There appears to be some advantage in the procedure of initially moving to tsvo 
adjacent time ievels symmetrically. Other procedures such as a forward or backward 
whole time step difference gave some alternating grid point noise which, of course, 
the pure leapfrog method does not suppress as time advances. Trapezoidal 
corrections to the leapfrog method suppress this oscillation, but also damp waves a 
little and decrease the accuracy of solitary waves. I have seen no evidence of 
statistically significant alternating grid point noise in the the fields when the 
calculations are started symmetrically, as described above, 

4. TESTY OF THE ACCURACY AND STABILITY OF THE CALCULATIONS 

A series of runs were made in a long channel of uniform breadth with initial 
conditions 

q(x, t = 0) = q&c, t = 0) = a, sech’ U(X -x,,,) (4.1 I c l, 

where a, is an initial amplitude, and u is related to it by 

f2 = ) &f/(1 + a,). (42) 

The relation between q and q in (4.1) and between LT and ai in (4.2) holds for the 
(lowest order) analysis of a solitary wave found in Lamb ,[ 11. The computational box 
contained 1840 grid points; time was advanced through I184 time steps. The step 
sizes were Ax = At = l/8, so that the box length is approximately L = 230, and time 
advanced to approximately 148. Some nonsolitary wave disturbance was present in 
the initial conditions for all runs, but the solitary wave soon outran other distur- 
bances. 

Various diagnostics were performed to determine the properties of this wave. The 
location and value of the crest elevation was found by fitting a parabola through the 
highest elevation and its neighbors, from which a wave speed was determined. 
Various integral properties of the solitary wave, such as its mass, 2 s,“,,,,, q dx. were 
determined by numerical integration from the crest to the right side of the box. The 
two linear conserved quantities in (2.4) and (2.5), mass and velocity, are found to be 
conserved properly in the calculations. 

Specifically, from (2.4) the conserved quantity is the total area above still water 
level; this comes from multiplying (2.4) by b and integrating over the computational 
box 
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Because U = 0 at the end walls, xright and xlelt, only the first term of (4.3) is nonzero. 
Integration over time gives 

-Xright ! (qb) dx = Const. (4.4) 
Xleft 

The integral of (4.4) is monitored at each step of the calculation, and is found to be 
constant (to the four significant figures printed out in every calculation). From (2.5) 
the conserved quantity is an integral of qs, i.e., 

where in (4.5) we have dropped terms involving qs and q’ at the ends, because they 
vanish there. The integral over time produces 

-+-[ (+)‘--j+)‘][ dt+Const. (4.6) 

Equation (4.6) says that at each time the total “velocity” in the box J’ qs d,u varies 
only by fluxes entering from the end walls (the right-hand side of (4.6)). Before 
disturbances reach the walls we find that 1 qs dx is conserved to four significant 
figures. After q # 0 at an end wall, we find the differences between the two sides of 
(4.6) are small and can be explained as roundoff and truncation errors. 

Figure 4 shows the wave speed, Fig. 5 the total solitary wave mass, and Fig. 6 the 
total energy of the solitary wave. The squares represent runs with second-order 
dispersion (see 2.16); the triangles represent third-order and fourth-order dispersion 
runs (2.17 and 2.18). Because these are solitary waves, where nonlinear effects 
balance dispersive ones, the formal accuracy of the analysis on which the 
computations are based is limited to second order, however, and improving the 
dispersive contribution alone should not effect the formal accuracy of the solutions. 
From Figs. 4-6 it is clear that the numerical calculations are accurate-more so 
than “second-order” solitary wave theories. The second-order dispersion gives the 
most accurate results, likely a fortuitous result, and one which I do not emphasize. 
No matter how the dispersion is treated, the solitary waves are accurate. The highest 
run using second-order dispersion shown in the figures occurs when in (4.1) a, = 0.5, 
giving a wave that asymptotically has an amplitude of 0.5853. When a, = 0.6 was 
attempted, the calculations became unstable. Using fourth-order dispersion, ai = 0.6 
leads to a wave having an amplitude of 0.724. The run for a = 0.7 became unstable. 
No attempts at finding out where runs with third-order dispersion became unstable 
were made. 
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FIG. 4. Comparison of solitary wave speeds. The exact results are from Longuet-Higgins and 
Fenton [21] and from Witting [22]. The analytical expansions are from Longuet-Higgins and Fenton 
[21]. The first-order wave speed retains terms through (a/h,), the second through (a/h,)‘, etc. Ali 
computations here are made with Ax = dr = I,@. 
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FIG. 5. Comparison of solitary wave masses. The exact results are from Longuet-Higgms and 
Fenton [21] and from Witting [22]. The analytical expansions are from Longuet-Higgins and Fenton 
[21]. The first order mass retains terms through (~/h,)“~. the second through (a//~~)~‘~~ etc. A!1 
computations here are made with Ax = AI = l/8. 
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FIG. 6. Comparison of solitary wave energies. The exact results are from Longuet-Higgins and 
Fenton [21] and from Witting [22]. The analytical expansions are Longuet-Higgins and Fenton [21]. 
The first-order energy retains terms through (a/h,)3”, the second order through (a/h,)‘,“, etc. All 
computations here are made with dx = At = l/8. 

The resolution Ax = At = l/8 is sufficient to make truncation errors small. Results 
at resolution Ax = At = l/4 show slight departures from those displayed. Runs at 
Ax = At = l/16 are unstable at lower amplitudes than at Ax = At = l/8. This result 
may be caused by roundoff error, and might not hold for calculations carried out 
with more precision than the 6-7 places used (single precision). Where results of runs 
using Ax= At- l/8 and Ax = At = l/16 can be compared, they agree within 
roundoff errors. This is in accordance with the linear analysis leading to Eq. (3.8), for 
(l/36) k”(Ax)’ is very small, even if the estimate of appropriate values to use for k” 
are not so small. If we assume that truncation errors are proportional to (Ax)‘, the 
small differences observed between a run with Ax = l/4 and Ax = l/8 indicate that 
truncation differences between runs with Ax = l/8 and Ax = l/16 should be masked 
by roundoff error, as observed. 

5. EXAMPLES 

While it is not difficult to run numerous examples of water waves that have 
different boundary geometries and initial conditions, this paper limits discussion to 
four different types that span a variety of conditions. In subsection A an example of 
solitary waves colliding head-on is shown. In B examples of essentially dispersive 
wave trains are shown. In C examples of solitary waves propagating in a converging/ 
diverging channel are shown. In D an example of long waves of depression coupled 
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with an undular bore is shown. These examples are designed to illustrate the 
capability of the numerical calculations to treat waves for which dispersive effects are 
larger than, less than, and comparable to nonlinear effects. 

A. Solitary Wave Collision 

The past twenty years has witnessed a surge of interest in whether the solitary 
waves described by various model equations are solitons. Here I define solitons as 
solitary waves that emerge from a collision with each other having the identical 
structure that they had prior to colliding (an individual soliton may be retarded or 
advanced during the collision). The two first-order theories that have been used to 
study colliding solitary waves in water are the KortewegdeVries equation 

and the regularized long wave equation 

= 0. 

The formal accuracies of (5.1) and (5.2) are the same. The first two terms are 
O(c,ur”), the next is O(E’,U’~‘) and the last is O(E,U~“). At O(E~‘.“) the solution is 
a/& = -Z/;ix, sp that in the last term of (5.1) -a/at may be substituted for Z/&s to 
give (5.2) without modifying the formal accuracy. Yet the solitary waves of (5.1) arc 
solitons (Zabusky and Kruskal [8]), while those of (5.2) are not quite solitons (Bona 
et al. [28!, Santarelli [29], Lewis and Tjon [30]. 

Here I describe calculations designed to see whether solitary waves in the higher- 
order theory are solitons. The still water depth and the breadth of the channel are 
constant. The initial form of each wave is chosen to have a waveform that is solitary- 
wave-like, i.e.: 

TV = a sech’ u(x -x,,,) (5,3) 

where x,,, marks the initial location of a wave crest, and a and u are adjustable 
parameters, as in Eq. (4.1). After some experimentation, I have found that the choice 
of a and ct that produces acceptably small disturbances other than a propagating 
solitary wave differs a little from that of (4.2). Here a solitary wave is chosen having 
one of the amplitudes listed in Longuet-Higgins and Fenton [21, Table 51, for which 
selected, essentially exact, solitary wave properties are known. Among these are the 
speed , the mass IT, q dx, and the potential energy 4 !“i”, qZ dx. These latter two are 
sufficient to determine a and CL for the particular solitary wave in mind. The initia! 
value of 4, is found by setting a/i% = kF;i/ax in (2.5) [the - sign for an intended 
right-going wave and the + sign for left-going], and solving the resulting quadratic 
equation for qs = q,(F, v, r’). 

58 1,‘56, 2-4 
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at- 
-40 

FIG. 7. Space-time display of the elevation above still water level of two solitary waves colliding 
head-on. The amplitudes of the waves are initially 0.2 and 0.4. The time interval between curves is 
3.125. The calculations are run with second order dispersion and dx = dt = l/8. 

Figure 7 shows plots of the elevation above still water of a disturbance which 
started with a pair of solitary-like waves. The wave initially at x = 50 approaches an 
amplitude of 0.1970 prior to the collision. The wave initially at x = 150 approaches 
an amplitude of 0.3861 before the collision. During the collision the elevation reaches 
0.6350, somewhat more than the sum of the amplitudes of the colliding waves. By the 
end of the experiment the rightward wave had reached an amplitude of 0.1962 (and 
was still rising slowly), and the leftward wave had reached an amplitude of 0.3851 
(and was also still rising). 

Figure 8 takes the same data as used to plot Fig. 7, expands vertical scales by a 
factor of 3 and clips off the wave crests. Although some oscillatory wave trains are 
visible that have their origin at the initial condition, the major oscillatory wave trains 
that fill the region between the solitary waves at t 7 50 emanate from the collision. 
These waves have some energy that the solitary waves are leaving behind. Conse- 
quently, the solitary waves cannot be solitons (strictly speaking, no more than one of 
them can be). 

FIG. 8. Expanded view of the solitary wave collision of Fig. 7. Vertical scales are enhanced by a 
factor of three and large elevations are clipped at the value 0.02. 
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The question remains whether the existence of the oscillatory wave trains that show 
the solitary waves to be not exactly solitons can be an artifact of the finite difference 
numerical treatment. One potential source of error could be what numerical 
analysists refer to as truncation error, which tends to be proportional to (dxj’ for 
small Ax. To rule out this possibility, the calculations were run with Ax = At = l/d- 
I.e., at one half the resolution of Figs. 7-8. The oscillations between the solitary 
waves had about the same amplitudes and phases at both numerical resolutions. For 
example, the first few minima and maxima to the right of the larger solitary wave at 
the top of Figs. 7-8 have the values -0.0092, $0.0096, -0.0068, +0.0034, -0.0047, 
+0.0047. The coarser resolution run gives the corresponding values of -0.0087. 
+0.0127, -0.0078, +0.0083, -0.0062, +0.0071. While it is true that the coarser 
resolution oscillations are a little more intense than the finer resolution ones, they are 
not the factor 4 expected under the hypothesis that the existence of the oscillatory 
train is due to truncation error (the reason the oscillations are a little stronger is 
Pikely due to the fact that with the same initial conditions the solitary waves are a 
httle higher before collision for Ax = At = l/4, than for Ax = At = l/8). 

To see whether the treatment of dispersive terms would influence the propagation, 
a run at Ax = At = l/8 with fourth order dispersion (not the second order for Figs. 
7 - 8) was made. Again, the oscillatory wave train is present, with almost exactly the 
same amplitudes and nearly the same location of maxima and minima as in 
Figs. 7-8. 

Finally, a test was made to see whether any diffusive artifacts were introduced into 
the computer program. Figure 9 shows the results of a calculation run to a time of 
100, then time reversed. This involves a total of 1600 time steps. (As for Fig. 8, the 

FIG. 9. Expanded view of the same solitary wave collision, but with time reversal and clipping at 
0.04. The time scale is the same as for Figs. 7-8, so that the time interval between curves is 6.25. 
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amplitudes are clipped). To be scale of the figure the calculations are perfectly rever- 
sible. The uppermost profile shown in Fig. 9 would be identical to the initial profile if 
the calculations were perfectly reversible. In fact, these two differ by O(10P4) 
throughout the computational region. We ascribe these small differences to roundoff 
error in running through 1600 time steps (800 forward and 800 back) with single- 
precision accuracy (6-7 significant figures). The phases of the crests are remarkably 
well preserved. For example, the crest of the leftward propagating wave, which 
started at x = 150.000 returned to x = 150.015, after the round trip travel distance of 
234. We may conclude that these colliding solitary waves are almost solitons, but not 
quite. 

B. Dispersive Wave Trains 

The wave model derived here is designed to produce solutions for linear and not so 
linear wave trains that are not necessarily long. To see how faithfully the model 
represents such wave trains, consider the disturbance produced from the initial con- 
dition 

q = 0.08(x - 25) sech* 0.08(.x - 25) 

The nondimensionalization is again the obvious h, = g = 1. This type of distur- 
bance resembles that of an impulse distributed over a spatial region of the order of 
unity. Figure 10 shows the results of the calculations running for a non-dimensional 
time of 100 and time reversed for the following time interval of 100 (1600 time steps 
in all). The result is a dispersive wave train. The longer waves travel faster than the 
shorter ones, and so these longer waves appear at the front of the train. As in all of 
the figures in this paper, the time and space scales are set so that a feature of a distur- 
bance (a crest, for example) lines up with a slope of exactly unity if it travels with a 
speed of unity (in dimensionless units; unity corresponds to the long wavelength limit 
of linear wave propagation, & in dimensional units). As Fig. 10 shows, the longer 
waves at the front of the train have speeds slightly less than unity, while the shorter 
waves travel slower. Waves near the rear of the train are very short, having length 
scales considerably less than the depth. (The best measure of a length scale of a 
periodic wave is its inverse wave number k-l, rather than its wavelength A. This 
makes the measure of the smallness of the wave scale equal to k/z,,, a number that is 
unity when the waves are intermediate between being shallow water waves deep water 
waves. In Fig. 10 the waves near the back of the forward going train are essentially 
deep water waves.) Thus, the wave model sees essentially deep water waves, even 
though its design involves an expansion in a parameter that vanishes only in the limit 
of shallow water waves. How well the model treats deep water waves is still a matter 
of conjecture, because sufficient testing has not yet been performed. It is comforting, 
however, that we see the deep water waves, and the dispersion relations shown in 
Fig. 3 say that waves should be pretty well represented out to kh, as large as 8 or 
more (these are really deep water waves). 
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DIMENSIONLESS DISTANCE 

FIG. 10. Waves from an impulse-like initial waveform, with time reversal, The time scale is the 
same as the space scale, so that the time interval between profiles is 6.25 and speeds of f 1 would show 
up along lines oriented at rt45’. Time advances to t = 100, and receeds to t = 200. The elevation scaie is 
0.05 per interval: the initial waveform has a maximum of a little less than 0.05. The calculations are xn 
with second-order dispersion and Ax = df = l/8. 

As in the calculations that produce Fig. 9, the code is reversible, apart from round- 
off error. The topmost profile is identical to the initial lowermost profile to within a 
few parts in 10P6. The maximum elevation of the topmost profile occurs at the 
location x = 25.966, where it was initially at 25.965, thus indicating very good phase 
stability. 

In order to make more quantitative statements about how well the model handles 
dispersive wave trains, calculations were performed with the initial profile 

?I= 0.5 sech’ 0.2(.u - 12.5) cos 2(x - 12.5) (5.5) 

and the initial surfaces velocity set from using (2.5), with F being the anticipated 
wave speed of a periodic wave having wave number 2.0. The resulting disturbance is 
almost entirely right-going, as expected. Figure 11 shows 33 profiles, equally spaced 
in time, running from t = 0 to t = 50. Both an individual wave crest and the entire 
disturbance travel at speeds less than unity. The crests travel faster than the group, 
entering at the left and disappearing at the right. This is a graphic demonstration that 
for water waves the phases travel faster than the group. 

The computational data that make up Fig. 11 were examined in some detail. To 
round-off error, the largest wave crest travels at the linear speed of waves of wave 
number 2.0. Again to round-off error, the entire group travels at the group speed of 
linear waves. This latter result is not surprising, even though the wave train is SO 
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FIG. 11. Dispersive wave packet. The time scale is the same as the space scale, so that the time 
interval between profiles is 1.5625. The elevation scale is 0.15 per interval; the intital waveform has a 
maximum of 0.15. Calculations are run with fourth-order dispersion and Ax = At = l/S. 

short that the notion of a group speed (in the linear theory) is a little fuzzy. The 
former result, that the phase of the largest wave traveled at the linear phase speed, 
surprises me a little. Because the waves near the center of the train are not small- 
amplitude, one might expect that they would move with speeds a little larger than the 
predictions of linear theory. For example, the crest of a nonlinear periodic wave 
described by Stokes wave theory should travel approximately 4.4 percent faster than 
linear waves of the same wavelength for the example shown. The precision of the 
calculations of crest speed is about 0.5 percent. Why the largest crest travels closer to 
what linear theory predicts, rather than what nonlinear theory predicts, is an 
unanswered question at this time. It may have to do with the shortness of the train, so 
that the largest crest is intimately connected with small amplitude waves; more likely, 
the fact that at k = 2.0 the waves are closer to being deep water waves than shallow 
water waves means that accuracies of the model are no better than a linear wave 
model (see Fig. 2). 

As a test of one aspect of the model, the data used in generating Fig. 11 were 
examined a little more carefully to see whether one feature of high, not-so-long waves 
that is obvious to any observer of waves-their sharp-crestedness- becomes more 
apparent as the wave amplitude increases. The waves of Fig. 11 are more nearly 
deep-water waves than shallow-water waves, and their slope is the better measure of 
nonlinearity than their amplitude-depth ratio. Here the maximum slope is about 0.3, 
and so the waves are not “small amplitude”; they are also not “near-breaking,” which 
would call for maximum wave slopes of the order of 0.6 (tan 300). Figure 12 is a 
blowup of the data from the uppermost profile of Fig. I1 (at the top) and of the 
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FLG. 12. Details of dispersive wave packet of Fig. 11. The upper profile is at r = 50: the lower 
profile is at 1 = 25. 

profile (at t = 25). When large (the center of the figure), the waves are somewhat 
sharp-crested. From this we can conclude that the wave model reproduces the sharp- 
crested feature possessed by high water waves, even when the wavelength is not so 
long. Whether all features of high, not-so-long waves are reproduced from this long- 
wave model is not yet possible to say. 

C. Waves in Channels of Variable Breadth 

The wave model incorporates a variable channel breadth, under the circumstance 
that a measure of the length over which the breadth changes substantially is much 
greater than the horizontal scale of the wave. A computational channel was set up to 
replicate conditions of experiments by Chang et al. [ 3 11. The channel is 10 times 
wider or narrower at one end than at the other. We connect the converging/diverging 
parts of the channel with parallel wall geometry, so that a wave can travel a long way 
before encountering the variable part of the channel. For the diverging case, para!lel 
side walls occupy the region between x = 0 and x = 120. The walls then diverge from 
x = 120 to the end of the channel, which is at x = 200 (see the top of Fig. 15). The 
experiments had a shorter entrance section, and did not terminate in a rigid wail, 
Before the wave bounces off the end wall, however, the computations should mirror 
the experiments. 



228 JAMES M. WITTING 

FIG. 13. Solitary wave propagating to and through a diverging channel (see top of Fig. 15 for thr 
geometry). Again, the time scale is the same as the space scale, so that the time interval between profiles 
is 4.625. The elevation scale is 0.05 per interval; the initial waveform has a maximum of 0.4. 
Calculations are run with second-order dispersion and dx = dr = l/8. 

They do. Figure 13 displays the propagation of a wave that is designed to be a 
solitary wave initially, as in earlier displays. The initial conditions are set to be the 
same as those of the leftward-propagating wave of Fig. 10 (except that it is right- 
going), i.e., with an amplitude that stayed constant near 0.386 as the wave 
approached the entrance to the diverging part of the channel at x = 120. The wave 
generates a significant reflected wave as it first passes through the diverging section 
of the channel. It is here that reflections are expected to be the largest, for the 
nondimensional length associated with changes of channel breadth are the largest 
near the entrance section. The solitary wave gets smaller, and acquires an oscillatory 

0 IO 
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FIG. 14. Solitary wave propagating to and through a diverging channel. The data are the same as 
for Fig. 13, but are viewed from the coordinate system moving to the right with a dimensionless speed of 
unity, the coordinate systems being aligned at t = 0. 
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FIG. 16. Solitary wave propagating through a converging channel. The wave was launched at 1= 0, 
x= 25, with an amplitude of 0.2. The elevation scale is 0.15 per interval. Calculations are run with 
second order dispersion and dx = At = l/8. 

experiments, but inconsistent with Korteweg-deVries theory (see Witting and 
McDonald [ 23 I). 

Two asymptotic theories describe the behavior of waves in channels of gradually 
varying breadth: the first, derived by Green [26], predicts that the amplitude of the 
disturbance a is related to the channel breadth b by 

a cc b-‘12. (5.6) 

The second, discussed in detail by Miles [32], who independently derives earlier 
results, gives 

a a b-‘13. (5.7) 

The first result assumes that the waves can be described by linear long wave theory, 
and that the disturbance is small compared to the distance over which the channel 
varies substantially. The second result assumes that the waves can be described by a 
Korteweg-deVries theory, and that the channel changes breadth so gradually that not 
only is there room for the wave itself, but also for the wave to continually reform 
itself so as to remain a solitary wave. The wave propagations shown in Figs. 13-16, 
and also from other geometries and initial conditions, give results that generally lie 
between the extremes of Eqs. (5.6)-(5.7), and cast doubts as to whether in practice 
the requirements of the asymptotic theories apply. Briefly, it appears that extremely 
long channels (L = hundreds) may be required to allow sufftciently gradual changes 
in breadth. For cases run in moderate-length channels (L = 200) there is not enough 
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room. Moreover, in situations where a channel has a converging/diverging section 
with entrance and exit sections identical, we find irreversible behavior; i.e., the 
emerging waves are smaller when they leave the variable section than they were when 
they entered. The calculations show that this is principally the result of reflected 
waves that escape to infinity whenever a wave passes through a section of variable 
breadth. Both asymptotic theories incorrectly predict reversibility, at least in the sense 
that the amplitude of the emerging wave should be identical to that of the entering 
wave. 

D. Utzdular Bores and Long Waves 

Computational experiments were run to see whether it would be possible to 
simulate the laboratory experiments of Favre [25], which, even today, form the most 
complete set. One aspect was not modeled-the manner by which the bores were 
generated. Favre pushed water into one end of his box; here a “dam” is broken, the 
water filling the computational region being initially still. Figure 17 simulates one of 
Favreis experiments (see his Fig. 41). The water at the left has a dimensionless 
height of 0.4. Two waves are launched from the initial condition: a long wave that 
travels to the left, unsteepens, and reflects from the wall at x = 0. This wave could 
just as well be described by long wave theory as by anything more sophisticated. The 
initially long wave travelling to the right, however, steepens for a while, and then 
starts to generate a wavetrain. The entire structure to the right of x = 141 is a bore 
that soon becomes undular, but never reaches a steady state. The maximum elevation 
of the undulations becomes about 0.4 at late times. 

The experiments of Favre show the undulations to form at much earlier times, so 
calculations were performed with an initially sharper gradient of elevation. Figure 18 

FIG. 17. Undular bore and long wave disturbance from the breaking of a gentie-faced dam. The time 
scale is the same as the space scale, so that the time interval between profiles is 11.5625. The elevation 
scale is 0.2 per interval: the initial elevation at the left is 0.4. The calculations are run with four&order 
dispersion and Ax = Al = 0.3 125. 
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DIMENSIONLESS DISTANCE 

FIG. 18. Undular bore and other disturbances from the breaking of a sharp-faced dam. The time 
scale is the same as the space scale, so that the time interval between profiles is 11.5625. The elevation 
scale is 0.2 per interval; the initial elevation at the left is 0.4. The calculations are run with fourth-order 
dispersion and dx = Ar = 0.3 125. 

FIG. 19. Detailed view of an undular bore. The data are samples of the same data shown in Fig. 18, 
but are viewed from the coordinate system moving to the right with a dimensionless speed of unity, the 
coordinate systems being aligned at I = 0. Shown are the profiles at every 148th time step, and, from 
bottom to top, occur near t = 0, 46, 93, 139, 185, 231, and 278. 
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shows the results. The unsteepening wave of depression travelling to the left is now 
accompanied by an oscillatory wave train, generated, presumably, by the initial sharp 
gradient. The undular bore is qualitatively the same, but the undulations begin to 

form earlier. Indeed, the number of waves in the train at any time closely resembles 
the number in the wave probe records shown by Favre at locations comparable in 
space-time. 

One interesting feature of the calculations, also seen earlier [33], is that the water 
depth at the location of the initial disturbance rapidly goes to the value given by long 
wave theory, until reflections from end walls intrude. For the conditions of Fig. 17 
this is not surprising, for the wave is at least initially long. For the conditions of 
Fig. 18, assumptions of the long wave theory are violated even initially, and so the 
manner by which the system adjusts to the long wave results is an interesting 
problem. I have no idea how to go about deriving this observed result from analysis, 

To see the undular bore structure a little better, the data of Fig. 18 are replotted 
from the frame of reference moving to the right with a speed of &&. Plotted in 
Fig. 19 are the initial, 4th, 8th . . . 24th profiles of Fig. 18. This corresponds to times 
of 46. 93, 139, 185, 231, and 278. The qualitative features correspond closely to 

FIG. 20. Detailed \iew of an undular bore with dissipation. Initial data and running conditiocs arc 
the same as for Figs. 17-19. The only differences between this and Fig. 19 are due to the effects of 
running with trapezoidai correction at each time step. 
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calculations using the Korteweg-deVries equation (see Peregrine [ 1 l] and 
Vliegenthart [27]). For example, the line connecting particular crests near the front is 
nearly straight, its slope decreasing as time increases. Favre’s experiments at early 
times show the same behavior. At late times, however, Favre’s data show 
“saturation,” the lead few waves having the same amplitude, only the waves further 
back showing the evolving sloping line. Thus, the results of the computations given 
here do not model this feature of the experiment any better than do other theories. 

In an attempt to better model the experiments, some dissipation was added. The 
form of model dissipation is that of the trapezoidal correction of the basic leapfrog 
method, performed at each time step. Figure 20 shows the results for the same 
conditions as in Fig. 19. Figure 20 looks like a damped picture of Fig. 19, i.e., the 
waves are smaller, but the overall envelopes of the profiles are qualitatively the same. 
It is true that there are differences in the model dissipation and the laboratory 
dissipation. Nevertheless, it is likely that the difference between experiment and 
theory is due to something other than dissipation, perhaps surface tension. This 
contrasts with the case treated in the last subsection, where the experiments definitely 
favor this theory over Korteweg-deVries theory. 

6. DISCUSSION 

The end result of the work reported here is a new model of water waves that can 
describe a wide variety of propagation situations accurately and efficiently. The 
following factors are responsible for this development: 

1. The model uses exact prognostic equations in conservation form, Eqs. (2.4) 
and (2.5). A very general derivation of (2.5) is given by McDonald and Witting [24]. 
To my knowledge it has not been used in wave modeling before now. 

2. Higher-order expansions than used before connect the velocity variables that 
appear in the governing equations. This allows the model (a) to incorporate long 
wave theory exactly, (b) to give a good representation of waves all the way out to kh, 
exceeding 8, thus including both shallow water and essentially deep water waves in 
the same model, and (c) to represent fairly-long nonlinear waves to one order better 
than Boussinesq. 

3. The model employs a numerical method, i.e., pure leapfrog, that gives no 
unwanted numerical diffusion. The time-stepping procedures are simple enough to 
analyze in some detail and to implement efficiently on vector computers. 

4. The model takes a time step equal to a space step (in nondimensional units 
for which the linear long wave speed is unity). This allows for efficient machine 
computations, unlike methods developed for the Korteweg-deVries equation. 
Moreover, this procedure removes any spurious numerical dispersion at order 
k’(Ax)‘. 

5. Finally, the diagnostic equations are cast in a form such that only tri- 
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diagonal matrix equations need to be solved. A very fast, fully vectorized algorithm is 
then used to invert the matrices [34]. 

Running times for the unified waves model on the TI-AK-7 computer are 
approximately 20 msec per time step for a computational region containing 1600 grid 
points. A run to t = 150 with resolution dx = At = l/8 takes about 24 sec. About half 
of the running time is spent in collecting diagnostic information and can be 
eliminated, if desired. In summary, computer costs to run the model are very small. 

No detailed comparisons have been made with other numerical models for specific 
problems. In general, though, it is clear from Figs. 2-6 that the model is considerably 
more accurate than Boussinesq models, and can deal with higher and shorter waves. 
The flexibility of the model to treat different physical condihions is illustrated by Figs. 
7-20 with accompanying text. Consequently, the model represents a great 
improvement over other expansion-type models. Except for breaking waves and other 
extreme situations that it cannot reach, the unified waves model can treat the same 
problems as non-expansion-type models, such as Lagrangian and Marker-in-cell 
models, but at a tiny fraction of the cost. In practice, these more complicated models 
do not employ a resolution line enough to compete with the new waves model. 
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